
Journal of Statistical Physics. Vol. 88, Nos. 3/4, 1997

KEY WORDS: Vlasov-Poisson equations; Manev correction.

1. INTRODUCTION AND BACKGROUND

One of the first and best-known confirmations of Einstein's theory of
general relativity was the qualitatively correct explanation of the advance
of the perihelion of Mercury by 43 arc seconds per century, a fact which
was unexplained by Newton's laws and classical mechanics.

There is, however, an alternative (and related) way to produce this
effect. In a series of papers published between 1924 and 1930, G. Manev
[Mal-Ma4] studied a correction to the attractive Newtonian potential of
the type
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We consider the classical stellar dynamic (Vlasov) equation with a so-called
Manev correction (based on a pair potential y/r + e/r2). For the pure Manev
potential y = 0 we discuss both the continuous case and the N-body problem
and show that global solutions will not exist if the initial energy is negative.
Certain global solutions can be constructed from local ones by a transformation
which is peculiar for the e/r2 law. Moreover, scaling arguments are used to show
that Boltzmann collision terms are meaningful in conjunction with Manev force
terms. In an appendix, a formal justification of the Manev correction based on
the quasirelativistic Lagrangian formalism for the motion of a particle in a
central force field is given.
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where y = G(m1+m2), (G is the gravitational constant, m1,m2 are the
masses of two mutually attracting bodies, and r is the distance between
them) and y = 3y2/c2 (see Diacu et al. [D] for a detailed introduction to
and discussion of the potential given in (1.1)). We shall henceforth refer to
(1.1) as a "Manev" potential, with Un(r) := —y/r as the "Newtonian" part
and Um(r) := -s/r2 the "Manev" part.

Indeed, as is well known, solutions of the two-body problem with an
attractive force given by a potential as in (1.1) lead to precessional ellipses
rather than to stationary ellipses, and the above choice of the constant e
gives the correct rate of precession for Mercury. For a detailed discussion
of the history and applications of the Manev law, we refer the reader to
[D]. A most remarkable fact is that already Newton was aware of preces-
sional ellipses as solutions to the simplified two-body problem (see [N]);
the full two-body problem is solved in [D].

We give a rationale for a correction of Manev type to the Newtonian
potential in the appendix, but we emphasize that we only consider this as
a possible mathematical model mimicking some relativistic effects, without
any hard qualitative or quantitative evidence.

The purpose of the present article is to consider the Manev gravita-
tional law in the context of stellar dynamics. The classical stellar dynamical
equation, first introduced by Jeans in 1915, treats the evolution of a stellar
system as given by

where f(x, v, t) is the stellar density at time t, position x and velocity
v, p(x, t) = \f(x, v, t) dv is the spatial density, and

The potential Un arises by linear superposition of the Newtonian potentials
of all the stellar bodies defining the density p.

The system (1.2-4)is a classical and fairly simple model for the
evolution of globular clusters, galaxies and galactic dust clouds (all stars
are assumed to be equal, which they are clearly not; effects like double stars
etc., are ignored). A famous result first obtained by Pfaffelmoser [Pf]
states that the initial value problem for the equations (1.2-4) has a global
classical solution; specifically, if f0 is C1 and has compact support, then
(1.2-4) admits a unique solution such that f ( - , t) is C1 and has compact



support for all f^O (for a more transparent version of the proof see
Schaeffer [Sch]; for a different proof see Lions and Perthame [LP]. A good
recent reference for these results is Glassey [G]).

The global existence results from [Pf] and [LP] were a major
breakthrough in the mathematical theory of plasma and stellar dynamics
(for the plasma physical case, all one has to do is consider > -<0 in (1.3),
i.e., switch to repulsive forces; the existence results from [Pf] and [LP]
cover both cases). However, these results possess one unsatisfying aspect.
In real stellar evolution, many astrophysicists believe in gravitational
collapse; even though we can't see them, we expect black holes at the
centres of large galaxies and elsewhere, but the solutions of the system
(1.2-4) predict no such gravitational singularities.

As we shall see in Section 2, the stellar dynamical equation with a
Manev-type gravitational correction of the type (1.1) must be expected to
lead to singularities; for general initial data, no global solution will exist.

The potential law (1.1) has an interesting property, which we believe
to be related to the non-global existence just mentioned. Consider the
N-body problem for the Newtonian (N) and Manev (M—see (1.1)) attractive
potentials respectively. It is a classical conjecture that the 6N -dimensional
Lebesgue measure of phase points whose evolution under (N) leads to
collision singularities is zero (this is easily seen for N = 2, see the
appendix); in contrast, it is known (see [Sa] or [D]) that the measure of
the set of such phase points for (M) is positive. In [D], this property is
derived by a careful analysis of the explicit solution of the two-body
problem. As a side result, we present in Section 2 an indirect argument
which shows that, for general but fixed N, the gravitational law (1.1) will
lead to singularities from initial sets with positive measure.

This article is organized as follows. In Section 2, we introduce Manev
equations and discuss the existence of the correction term relative to the
classical equation. We present the invariants and use them to argue that
global existence is not to be expected in the attractive case; the argument
we employ was first suggested by E. Horst [H] for the classical Vlasov
equation in 4 or more space dimensions. An adaptation of this argument
also proves this property for the N-body problem of (1.1), which we
mentioned in the previous paragraph. In Section 3, we present a rescaling
property for the pure Manev equation (i.e., the case where y = 0). This
rescaling property can be used to transform local solutions to global ones;
in this process, the initial values transform in such a way that the energy
changes from negative to positive.

In Section 4, we discuss the well-posedness of the initial value problem
from a formal point of view. We demonstrate that zero temperature data
lead to an ill-posed initial value problem, and we use classical linear
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stability analysis for the Euler equations associated with generalized Vlasov
equations, and for the full Vlasov equation with the pure Manev potential.

In Section 5, we investigate whether the effect of Manev-type poten-
tials in a particle system best be modeled by the Vlasov-Manev force term,
or by a Boltzmann collision term. We find the interesting result that poten-
tials of type a./r" lead to Vlasov-type collision terms for n < 2, to Boltzmann
collision terms for n > 2, and to both together exactly if n = 2. We mention
that Vlasov-Boltzmann equations have been discussed by Lions [L]. Our
discussion suggests that for Newtonian force terms, the Boltzmann collision
term should be formally negligible relative to the Vlasov term.

Part II of our work will address the local existence and uniqueness
question for Vlasov-Manev systems. In view of the results in Section 4, it
is not surprising that such existence results are not easy to prove. Specifi-
cally, we need a collection of estimates of the singular integrals defining the
Vlasov-Manev force terms. For the convenience of the reader, we list these
estimates in an appendix, with sketches of proofs.

Part III of our work will deal in some more detail with the derivation
of kinetic equations for particles which interact via an attractive potential
of Manev type as given by (1.1). We find that such equations should
include Vlasov-Manev force terms, Boltzmann collision operators and a
Smoluchowski type coagulation integral.

2. VLASOV-MANEV EQUATIONS

As already described in Section 1, the stellar dynamic Manev equation
(SM) arises from the standard stellar dynamic equation by adding a
correction to the force field as in (1.1). The result is an equation

888 Bobylev et al.

with

and
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In (2.3), the integral only exists as a Cauchy principal value; indeed, the
transformation defined by E2[p] is a multiple of the Riesz transform, a
well-known singular integral operator (see, e.g., [St], pp. 117-121). It is a
bounded linear operator in Lp for 1 < p < oo, but not in L1 or LJ. For our
purposes, we will use the fact that E 2 [ p ] is well defined if p is Holder
continuous with exponent 0 < a < 1 and in L1.

In that case,

and it is easy to see that this definition is independent of the choice of
R > 0. The first term on the right exists in view of the Holder continuity
of p. We shall mainly be concerned with the cases y > 0, e > 0, or y = 0,
e>0 (we refer to these cases as stellar dynamic Manev equation (SM) or
pure stellar dynamic Manev equation (PSM)). We focus on these cases
because of the particularly interesting mathematics, but mention that the
cases y>0, £ < 0;y < 0, E < 0; and y < 0, e > 0 can all be considered. Our
local existence theory from part II applies to all cases.

2.1. Invariants

In the remainder of this section, we assume that f(x, v, t) is a smooth
classical solution of (2.1).

First, recall the solution strategy for the ordinary Vlasov equation,
which applies here as well. Consider the characteristic system of equations

and note that the right hand side is divergence-free for the variables (x, v).
If we denote the solution of (2.4) for the initial values (x, v) on a time inter-
val I containing 0 by T'(x, v), then the family of solution operators { T 1 } ,e,
(defined while t e I) is known to preserve the Lebesgue measure on R6.
Note that this family depends implicitly on the solution /; otherwise we
would face a much simpler linear problem.

The equation (2.1) can be rewritten as



890 Bobylev et al.

and the invariance of the Lebesgue measure under {T1} implies that

for 1 < p < oo. In particular, we have conservation of mass and conservation
of nonnegativity, just as in the classical case.

We also mention that by integrating Eq. (2.1) over the velocity space,
the continuity equation

is satisfied, where j(x, t) = \ vf dv.
We next discuss the energy conservation law. For reasons which will

become clear in subsection 2.2, we choose to also study the pure stellar
dynamic Manev equation (PSM)

The energy conservation law for (PSM) reads

For (SM), we have

The proofs of (2.9) and (2.10) follow well known arguments. To prove
(2.10), e.g., differentiate fj v2f dx dv with respect to t and use (2.1):

The first term on the right is zero if f has compact support in x or vanishes
sufficiently fast at infinity. After an integration by parts, the second term
becomes
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The last step in this calculation is an easy consequence of the explicit
representation of Un and Um. Collecting terms proves (2.10).

We mention that momentum conservation also applies to (SM) and
(PSM):

2.2. On Nonexistence of Global Solutions

We denote by

and by

the total energies for (PSM) and (SM) respectively. In view of (2.9)
and (2.10), EPM(t) = EPM(0) for solutions of (PSM), and similarly EM(t] =
EM(0) for solutions of (SM).
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Now consider a classical solution of (PSM). Following an argument
first introduced by E. Horst [ H ], we compute the second derivative of the
moment of inertia,

The last integral is zero if / vanishes rapidly enough with respect to
velocity. In the first integral, we integrate by parts, and use the equation
again, to find

where we used integration by parts in both terms. The first term on the
right is 4 times the kinetic energy. For the second term, we use the special
structure of the term E2 (see (2.3)) to compute formally

and by interchanging x and y in the last term we see that

which is just 4 times the potential energy! Hence we have proved that

where we have used the energy conservation law.
The identity (2.11) is most remarkable, and revealing. First, observe

that the quantity \ x2p(x, t) dx is by definition nonnegative. On the other



hand, if the total initial energy EPM(0) is negative, the time evolution of the
moment of inertia is given by a downward parabola which must become
negative for t > t0, where t0 can be explicitly computed in terms of the
initial energy and the initial values of the moment of inertia and the
quantity Jf x • vf dx dv. It follows that the solution of (PSM) will not exist
globally if EPM(0)<0, and the breakdown (i.e., the formation of a
singularity) will happen at some time before t0.

For the full problem (SM) as in Eq. (2.1), the same calculation yields

2.3. Related Results for the N-Body Problem

The identity (2.11) holds, of course, in just the same way for the
corresponding N-body problem

Vlasov-Manev Equations 893

an identity which looks exactly as it would in the case e = 0 (i.e., without
the Manev correction, see [H]). Eq. (2.12) can be rewritten as

It is not possible to deduce a nonexistence result directly from (2.13), as
EPM(t) is now not invariant. However, the nonexistence result for (PSM)
suggests that there will in general also not be a global solution for (SM):
Gravitational collapse in regions of high density and low temperature is to
be expected.

We conclude this subsection by mentioning that these observations
are in close analogy with corresponding results for the relativistic Vlasov-
Poisson system, as discussed in [GS].

and reads

In fact, (2.14) appears in [B], but its consequences are not discussed there.
We note that (2.14) immediately implies that the set of phase points which
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lead to singularities is of positive measure: The condition EPM(Q) <0 is a
sufficient condition for this to happen.

We can use this observation to show that gravitational collapse for the
TV-body problem must also occur on sets of positive measure if y > 0.
Consider first the case N = 2 and assume that we are in a situation which
leads to collapse under the pure Manev field. The following argument then
shows that collapse must also happen under the full field.

Choose the origin of the coordinate system as the center of mass of the
two particles, such that the sums of the particle positions and velocities,
respectively, must be zero for all times before a collision. Note that the
forces F1 and F2 in the pure Manev (F1) and full Manev (F2) case are
acting in the radial direction, are decreasing as functions of r (where r is
the distance of a particle from the origin), and satisfy F1(r) <F2(r) for all
r (the Newtonian field increases the gravitational pull).

Let r,(t), i= 1, 2, t >0, be the solutions of

where vr0 is the radial component of the initial velocity of either particle.
To prove collapse, it is sufficient to show that r 1 ( t ) > r 2 ( t ) for all t>0 for
which r2(t)>0.

By Taylor expansion

and as F1(r0) <F 2 (r 0 ) , it follows that

and the right-hand side will be positive for sufficiently small t. By
continuity, we either have r 1 ( t ) > r 2 ( t ) for all t for which r2(t) remains
positive, or there is a minimal T>0 such that r 1 ( T ) = r2(T), and r 1 ( t ) >
r2(t) for t< T. But this second case leads to a contradiction because

where in the first estimate on the right we used the monotonicity of F1.



Vlasov-Manev Equations 895

In conclusion, it follows that collapse for the two-body problem with
the full Manev potential must occur whenever it would occur under the
pure Manev potential. As the latter happens on phase points with positive
measure, so must the former.

What about N bodies? An easy argument which generalizes the idea from
N = 2 is to simply focus on two particles and assume that the remaining
N — 2 are so far away from these two that their influence remains negligible
while the chosen two have time to collide in the chosen time frame. Indeed,
it is not very hard to convert this idea into a rigorous argument, and it
follows that the measure of the set of phase points for which gravitational
collapse will occur under the full Manev potential is indeed positive. We
omit the details.

3. A SYMMETRY PROPERTY

The following theorem applies to the "pure" stellar dynamic Manev
case, Eq. (2.8). We discuss also some links to the blowup of solutions at
singularities predicted in the previous section.

Theorem 3.1. Suppose that f ( x , v , t ) is a solution of a Vlasov
equation with intermolecular potential U(x) = e/\x\2 (e.g., PSM) on a time
interval [0, t0]. Then, for any a>0, the function

is also a solution of (2.8) for 0 < t < ta, where

Corollary 3.2. Suppose a local solution exists for an initial value
f\1 = o = f0(x,v), with existence interval [0, T(f0)]. Then, if a>1/T(f0),
there is a global solution, given by (3.1), associated with the initial value
f0(x, v-ax).

Proof. By direct inspection. If we set
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then

Let f(x, v, t) = F(y, w, T). By the chain rule

Moreover,

The potential will then be

By observing that dw/dv = 1+at (in the sense of a diagonal matrix),
dy/dx = 1/1 + at, we find (with derivatives interpreted in the appropriate
matrix sense)

By collecting terms, we observe that if f satisfies the general Vlasov equation
with intermolecular potential U, then F satisfies the Vlasov equation

where (pa(y, r) = \p(y', T){(1 +at)2 E7[(l +at)(y-y')]} dy'. Notice that
the expression (1 +at) in the last integral cancels exactly for the Manev
potential. The theorem follows. |
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We discuss the physical meaning of this theorem. To this end, we
introduce the shorthand notation

As observed in Section 2, we have the "conservation laws"

After integration,

For brevity, set E0 = EPM and assume that E0<0, i.e., E0= —\E0\. Then

Hence, the first time where <x 2 > is zero is

and the time of existence of the solution will be less than t*.
What happens to this calculation if we make the transformation given

in (3.1)? Let

then
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and

By repeating the calculation from above, we now find

Notice that the factor in front of t2 is twice the energy Ea. If we ask for
which a this energy is zero, we find

where t* is the "collapse time" computed in (3.2). Hence we have the
following interesting result: If t*(\E0\, <xv>> 0 , <x 2 > 0 ) denotes the time
given by (3.2), then the function f0(x, v — ax) will have nonnegative total
energy for all a > 1/t*. This observation is consistent with the statement of
Corollary 3.2.

4. VARIOUS PROBLEMS ASSOCIATED WITH THE
PURE STELLAR DYNAMIC MANEV EQUATION

4.1. A Zero Temperature Model

Assume that the solution f of (2.8) takes the following "degenerate"
form:

(spatial density p, bulk velocity u, zero temperature). By taking Fourier
transforms with respect to the velocity variable, one checks with little effort
that (2.8) reduces to the system

where U= UM= —e\p(y, t ) / \ x — y\2dy. In fact, the transition from (2.8)
to (4.2) by the ansatz (4.1) is an example for something completely general;
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for a Vlasov equation with a pair potential O(|x|), (4.1) reduces the
equation again to (4.2), but with

for the Newtonian potential,

Remark. Global existence of classical solution of (4.2) is not to be
expected even for the case U=0. However, we use (4.2) to explain connec-
tions between local existence results and specific forms of the potential.

The potential Un (and its first derivatives) are in general smoother
than the input density p; this is a key reason why the classical Vlasov
equation admits unique global classical solutions. However, the derivatives
of the pure Manev potential UM do not gain any smoothness over p
(the Riesz transform does not smooth), and unpleasant consequences are to
be expected. To test the situation, let us consider an even simpler, yet more
singular attractive model potential

with O > 0. This potential has smoothing properties similar to the pure
Manev forces, because

Eq. (4.2) read

For our purposes it is sufficient to consider just one spatial variable.
Suppose p = p ( x 1 , t), ui, = (5,1w(x1, t). Let x = x1 e R, then
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The equation determining the characteristic speeds for these equations is

But note that this has no real solutions for positive values of 0 and p!
Hence (4.5) is not even hyperbolic, and it follows that the Cauchy problem
for the equations (4.4) is ill-posed.

This ill-posedness is also formally transparent in a linear stability
analysis of (4.4) about the trivial steady solution p = 1, u = 0. To this end,
take 6=1 and let p = 1+ pe'k v + -*', u = ueik-x + A/. Inserting these in (4.5)
(or (4.4)) and neglecting nonlinear terms, we obtain a dispersion relation

i.e., A = + | f c | , for X and k. This means that instabilities grow linearly
incrementally faster as \k\ -> oo.

This linear stability analysis applies in the same way to the case of any
integrable pair potential <P(|x|). In this case, one finds a dispersion relation

with (f>(\k\) = \ < P ( \ x \ ) e i k . x d x .

Remark. One can use regularized formulas for the potential,

because only the gradient of U enters in the equations.
For the Newtonian potential <&,,= —y/\x\ we obtain

i.e., X n ( \ k \ ) = ±^/4ny. Hence we have uniform bounds on the growth of
instabilities, and the Cauchy problem for the linearized equations is well-
posed. However, for the pure Manev potential <PM= -£/|x|2,
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hence XM( \k\) — ±^/2n2s \k\, and the corresponding linear Cauchy problem
is ill-posed. Note that the growth of XM with \k\ is of lower order than for
the more singular example (4.5).

These observations also apply to the Cauchy problem in a cube with
periodic boundary conditions.

To summarize, we have observed that potentials more singular
than the Newtonian potential, i.e., potentials such that k~(p(\k\} -> oc as
\k\ -» oo, seem to lead to ill-posed linearized Cauchy problems.

Do these considerations render the stellar dynamics Manev equation
useless or uninteresting from a mathematical point of view? Our answer
is a resounding No. The above discussion indicates that difficulties and
unstable behavior of solutions are to be expected; but well-posedness for
smooth data and short times remains possible, because in the above discussion:

— we considered only a very singular class of distribution functions (4.1);

— we confined ourselves to the linear stability analysis;

— and we only linearized about constant stationary solutions,
whereas the case of real interest are solutions with compact support.

The point of our exercise was to show that drastic differences in terms
of solvability must be expected when one includes the Manev potential. We
will see below that these objections lose their strength when we assume
smooth velocity distributions; and indeed, a proof of local existence and
uniqueness of solutions is given in part II of our work on the stellar
dynamic Manev system.

4.2. Linearization About Densities with Smooth Velocity
Distribution: The Euler Equations

We now show that the situation becomes better when the velocity
distribution is smooth. First, we discuss the Euler equations as a model for
the Vlasov equation to demonstrate the difference between zero and non-
zero temperatures. Then we study the linearized Vlasov equation about a
sufficiently smooth velocity distribution function.

If we multiply the Vlasov equation by a smooth test function \l/(v), we
get

where we have used the shorthand
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By setting \jj = 1, v, v2, we obtain the exact (non-closed) equations for the
hydrodynamic variables

A simple, non-rigorous way to close the system for p, u and p is to assume
that / is reasonably well approximated by a Maxwellian distribution func-
tion, i.e.,

where T = p/p. We mention that this particular form of approximating / is
not essential for this closure; assuming that f is approximately of the form

leads to the same Euler equations, namely

with U=p*<i>. Note that for p = 0 these equations reduce to the zero-
temperature case discussed above. To investigate the impact of non-zero
temperature (or pressure p = pT), we now study small perturbations of the
equilibrium solution peq = peq =1,ueq = 0. Set p = 1 + p, p = 1 + p, u = it,
insert this into (4.9), neglect quadratic terms and omit the tildas. We
obtain a linear system,
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Now use the ansatz {p,u,p} = {P0,U0,P0} exp[i(k.x —ct)] and assume
for simplicity that k = (k1, 0,0). It follows that c = (c1, 0,0), where

Hence, for the Manev potential, the "increment of instability" reads

whenever |k|< 6n2£/5. It follows that there is a critical wave number
kcrit = 6n2s/5, such that all modes with k > kcrit are stable. This shows
that for nonzero temperatures the instability does not necessarily lead to
ill-posedness of the Cauchy problem.

4.3. Linearization About Smooth Velocity Distributions:
The Full Equation

Consider, once again, a general Vlasov equation, and set

We assume that f0 e C1(R3) and that f is a small perturbation. After using
this ansatz in the Vlasov equation, we neglect quadratic terms and drop the
tildas. The result is

where U = p * 0 and p = \ f dv. The ansatz

leads to a dispersion relation for A = X(k}:

For ue R, let F(u) = j f0(v) d(u-k- v / \ k \ ) dv. Then

822,88,3-4-24



i.e., the "increment of instability" will be bounded if supk \k\ \<p(\k\)\ < oo.
We have implicitly proved the following.

Proposition 4.1. Suppose that fo e C1(R3) has compact support,
and let d(f0) = diam(supp f0). Then all eigenvalues of the linearized pure
stellar dynamic Manev equation

904 Bobylev et al.

or, withc( |k |) = iA/|k|,

Integrating by parts, we get

Suppose now that c = c0 + ic1 with C | > 0 (i.e., we consider an unstable
mode). Eq. (4.11) decomposes as follows by splitting into real and
imaginary parts:

We estimate the "increment of instability" RU(|k|) = | k | C 1 ( | k | ) as |k|-»oo.
The first equation from (4.12) implies that

and we find

where fk = f k ( v ] and pk = \ f k ( v ) dv, satisfy the inequality
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5. A REMARKABLE SCALING PROPERTY

In this last section we discuss the relevance of Boltzmann collision
terms for the general interaction potential

(for the discussion in this section, we assume that the forces are repulsive;
attractive forces will be discussed in part three of our series of papers. As
will there be shown, the addition of a Boltzmann collision term alone does
not quite do justice to the attractive potential—there are also reasons to
add a Smoluchowski-type coagulation term). We have so far discussed the
"pure stellar dynamic Manev equation" with a Vlasov type interaction
term associated with n = 2. Let us now include a Boltzmann collision term
in our considerations and investigate how the various terms in such an
equation behave under rescalings.

If m denotes the molecular mass, the differential cross section
associated with (5.1) can be written as

where gn is a function such that |'_i fn(/*)(1 —fi)dti«x>. (see Cercignani
[C]). The Boltzmann collision kernel is then B(u, 0>) = \u\ o(u, 6), and the
Boltzmann collision integral is defined for all n > 1. For 1 < n < 3, we define
the general Vlasov force term for the potential (5.1) by

For the range 1 < n < 3, and from a formal point of view, we can therefore
consider the Vlasov-Boltzmann equation

with Q(f,f) = \ \ ( o i / m \ v - v | 2 ) 2 \ v-v*\ gn(cos 0 ) { f ' f 1 - f f * } dn dv*.
We investigate the question how the Boltzmann and Vlasov terms compare
in significance. To this end, let x0, v0 and t0 be typical length, velocity and
time scales related by x0 = v0t0. Suppose furthermore that v2,= T0/m, and
that p0 is a typical value of the spatial density. We pass to a dimensionless
form of (5.3) by setting x = X/X0, v = v/v0, t = t/t0, and
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We insert (5.4) into (5.3), use the chain rule and collect terms. After
deleting the tildas, we find

with Q 1 ( f , f) = J| |V -v* |1-4/n gn(COS 0){f'f'* - ff*} dn dv*,

and

Let *. = Cv(x0)/CB(x0 ) i.e., A = (<x./mv20)(n-2)/n x2-n . If we set r* =
[a/wv2]1/n, then X = [ r ^ / x 0 ] n - 2 - While x0 is a typical length for the
density distribution function in question, r* will be a distance between two
particles which are strongly correlated. If Po~l/3 is interpreted as a typical
distance between two particles, then a kinetic model for the particle system
is only meaningful if x0 > p-1/3 and r* p< p0-1/3. Hence, if we set e :=r*/x0,
we have e<^ 1, and

We see that the case n — 2 is the only situation where the Vlasov and
Boltzmann terms will be of the same order of magnitude. For the ordinary
Coulomb potential, the Vlasov term is dominant, and for n > 2 the
Boltzmann term is dominant.

We plan to address the attractive case in a future publication. In this
case, coagulation integral operators are meaningful in addition to the
Vlasov and Boltzmann collision terms.

APPENDIX: A JUSTIFICATION OF THE MANEV CORRECTION

Consider the motion of a particle in a central force field as described
by the Lagrangian formalism. The Lagrangian is
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where r=|x| and x = v. We only discuss the case where U(r) < 0, easily
enforced in the case of attractive Newtonian forces. The equations of
motion are

In polar coordinates x = (r, </>),

we realize that the angular momentum Pv = dL/dcp, = mr2(p, = M = const, is
invariant because q> is a cyclic coordinate, i.e., dL/8q> = 0. We use this
conservation of angular momentum to eliminate q> from the equation of
motion for r.

The easiest way to do this is by using the conservation of energy. The
total energy is

hence

and with <p2 = M2/m2r4,

Note that if U(r) = — y/r with y>0, Eq. (A.3) implies the classical result
that r cannot become zero unless M = 0. Indeed, the left hand side of (A.3)
remains nonnegative for all times, hence the right hand side must also
remain nonnegative, hence we can deduce a lower bound (the perihelion)
for r. We find it convenient to set
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and (A.3) becomes

We shall refer to (A.4) as the "radial equation."
Our goal now is to understand what changes occur in (A.4) if

relativistic effects are taken into account. The Lagrangian for a free particle
in classical mechanics reads

whereas its relativistic counterpart is

If we substitute this in the Lagrangian (A.1), we obtain

and after switching to polar coordinates again, the previous discussion can
be repeated with this new Lagrangian. The angular momentum and its
invariance now read

and energy and its invariance are

From the last equation we obtain
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hence (p, = (Mc2/r2)(\/(E— U(r))), and we can expand

Solving the last equation for r, we find

Let E=T + mc2, then this new radial equation can be rewritten in the form

Note that (A.6) reduces to (A.3) for c = oo. Let e = T/mc2 and assume that
|e| < 1. Eq. (A.6) becomes

Little qualitative effects are to be expected from the £-perturbations, as e is
small. However, independently of the size of E, the last term U2/2mc2

can alter the dynamics significantly when r is such that U(r)= mc2. To
anticipate such effects, we set s — 0 and arrive at the simplified equation

We discuss the part of the denominator on the right for a non-positive
potential U= — \U\ <0. To this end, we rewrite (A.7) as



910 Bobylev et al.

Suppose that \U\ =0mc2, where 0 is fixed, and let (formally) c-» oo. The
right hand side of the last identity will in this limit be bounded by

and we realize that the main part of the denominator in (A.7) is to guarantee
that \r\<c even for |(7|->oo. In a nonrelativistic approximation where
such a speed constraint is not required, we can replace this denominator
by 1.

Finally, we focus on a Newtonian potential U(r)= -y/r, with x>0 ,
and discuss qualitative effects arising from the corrections in the right-hand
side of (A.7). The numerator there then reads

Let rmin be defined by A ( r m i n ) = 0. For c= oo, rmin is always well defined
and coincides with the perihelion distance defined earlier in the non-
relativistic case. However, rmin does not exist if c < oo and

A particle with 0< |M| <Mcritical will reach the origin x = Q after a finite
time.

In conclusion, the behavior of this "quasirelativistic" model with a
potential U is qualitatively similar to a corresponding classical model with
the modified potential

In the Newtonian case,

this differs from the Manev potential for a central force field,

only by a numerical factor. As we are largely interested in qualitative
effects, we do not discuss possible explanations of this numerical factor.
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	them) and y = 3y2/c2 (see Diacu et al. [D] for a detailed introduction to

